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Abstract. Mobility data are an important proxy to understand the pat-
terns of human movements, develop analytical services and design models
for simulation and prediction of human dynamics. Unfortunately mobil-
ity data are also very sensitive, since they may contain personal informa-
tion about the individuals involved. Existing frameworks for privacy risk
assessment enable the data providers to quantify and mitigate privacy
risks, but they suffer two main limitations: (i) they have a high compu-
tational complexity; (ii) the privacy risk must be re-computed for each
new set of individuals, geographic areas or time windows. In this paper
we explore a fast and flexible solution to estimate privacy risk in human
mobility data, using predictive models to capture the relation between
an individual’s mobility patterns and her privacy risk. We show the effec-
tiveness of our approach by experimentation on a real-world GPS dataset
and provide a comparison with traditional methods.

1 Introduction

In the last years human mobility analysis has attracted a growing interest due
to its importance in several applications such as urban planning, transportation
engineering and public health (10). The availability of these data has offered
the opportunity to observe human movements at large scales and in great detail,
leading to the discovery of quantitative patterns (8), the mathematical modeling
of human mobility (9; 14) etc. Unfortunately mobility data are sensitive because
they may reveal personal information or allow the re-identification of individ-
uals, creating serious privacy risks if they are analyzed with malicious intent
(12). Driven by these sensitive issues, researchers have developed methodologies
and frameworks to mitigate the individual privacy risks associated to the study
of GPS trajectories and Big Data in general (1). These tools aim at preserving
both the right to individual’s privacy and the effectiveness of the analytical re-
sults, trying to find a reasonable trade-off between privacy protection and data
quality. They allow the definition of infrastructures for supporting privacy and
of technical requirements for data protection, enforcing cross-relations between
privacy-preserving solutions and legal regulations, since assessing privacy risk
is required by the new EU General Data Protection Regulation. To this aim,



Pratesi et al. (11) propose a framework for the privacy risk assessment of in-
dividuals in mobility datasets. Although frameworks like the one presented in
(11) are effective in many scenarios, they suffer a drawback: the privacy risk
assessment has a high computational complexity (non-polynomial in time) be-
cause it computes the maximum privacy risk given an external knowledge that
a malicious adversary may have, i.e., it considers all the possible ways the ad-
versary can try to re-identify an individual. Moreover, the privacy risks must
be recomputed every time new data become available and for every selection of
individuals, geographic areas and periods of time.

In this paper we propose a data mining approach for privacy risk assessment
that overcomes the computational limitations of existing frameworks. We first
introduce some possible re-identification attacks on mobility data, and then we
use linear regression to predict the privacy risk of an individual based on her
mobility patterns, and we compute the individual privacy risk level according
to the re-identification attacks. We then train a regressor on such data to es-
timate in polynomial time the privacy risk level of previously unseen vehicles
based just on their individual mobility patterns. In a scenario where a Data An-
alyst asks a Data Provider for mobility data to deploy an analytical service, the
Data Provider (e.g., a mobile phone carrier) can use the regressor to immedi-
ately identify individuals with a high privacy risk. Then, the Data Provider can
select the most suitable privacy-preserving technique (e.g., k-anonymity, differ-
ential privacy) to mitigate their privacy risk and release only safe data to the
Data Analyst. Our experiments on GPS data shows that our approach is fairly
accurate in predicting the privacy risk of unseen individuals in an urban area.

The rest of the paper is organized as follows. In Section 2 we define the
data structures to describe human mobility data according to different data
aggregations. In Section 3 we introduce the framework used for the privacy risk
assessment, while Section 4 describes the data mining approach we propose. In
Section 5 we show the results of our experiments and we discuss them. Section
6 presents the main works related to our paper and finally Section 7 concludes
the paper proposing some lines of new research.

2 Data Definitions

The approach we present in this paper is tailored for human mobility data,
i.e., data describing the movements of a set of individuals. This type of data is
generally collected in an automatic way through electronic devices (e.g., mobile
phones, GPS devices) in form of raw trajectory data. Every record has the
following fields: the identifier of the individual, a geographic location expressed in
coordinates (generally latitude and longitude), a timestamp indicating when the
individual stopped in or went through that location. Depending on the specific
application, a trajectory can be aggregated into different data structures:

Definition 1 (Trajectory). The trajectory Tu of an individual u is a tempo-
rally ordered sequence of tuples Tu = 〈(l1, t1), (l2, t2), . . . , (ln, tn)〉, where li =



(xi, yi) is a location, xi and yi are the coordinates of the geographic location,
and ti is the corresponding timestamp, ti < tj if i < j.

Definition 2 (Frequency vector). The frequency vector Wu of an individual
u is a sequence of tuples Wu = 〈(l1, w1), (l2, w2), . . . , (ln, wn)〉 where li = (xi, yi)
is a location, wi is the frequency of the location, i.e., how many times location
li appears in the individual’s trajectory Tu, and wi > wj if i < j. A frequency
vector Wu is hence an aggregation of a trajectory Tu.

We denote with D a mobility dataset, which we assume is a set of a one of
the above data types (trajectory or frequency vector).

3 Privacy Risk Assessment Framework

In this paper we consider the work proposed in (11), which allows for the privacy
risk assessment of human mobility data. This framework considers a scenario
where a Data Analyst asks a Data Provider for data to develop an analytical
service. The Data Provider must guarantee the right to privacy of the individ-
uals whose data are recorded. First, the Data Analyst transmits to the Data
Provider the data requirements for the service. With these specifications, the
Data Provider queries its dataset D, producing a set of datasets {D1, . . . , Dz},
each with different data structures and data aggregations. The Data Provider
then reiterates a procedure until it considers the data delivery safe:

(1) Identification of Attacks: identify a set of possible attacks that an adversary
might conduct in order to re-identify individuals in the datasets {D1, . . . , Dz};

(2) Privacy Risk Computation : simulate the attacks and compute the set of
privacy risk values for every individual in the mobility datasets {D1, . . . , Dz};

(3) Dataset Selection: select a mobility dataset D ∈ {D1, . . . , Dz} with the best
trade-off between the privacy risks of individuals and the data quality, given
a certain level of tolerated privacy risk and the Data Analyst’s requirements;

(4) Risk Mitigation and Data delivery : apply a privacy-preserving transforma-
tion (e.g., generalization, randomization, etc.) on the chosen mobility dataset
D to eliminate the residual privacy risk, producing a filtered mobility dataset
Dfilt. Deliver Dfilt to the Data Analyst when the Dfilt is adequately safe.

In this paper we focus on improving step (2), i.e., Privacy Risk Computation,
which is the most critical one from a computational point of view. Computing
the privacy risk of an individual means simulating several possible attacks a
malicious adversary can perform and computing the privacy risks associated
to each attack. The privacy risk of an individual is related to her probability
of re-identification in a dataset w.r.t. to a set of re-identification attacks. A re-
identification attack assumes that an adversary gains access to a dataset. On the
basis of some background knowledge about an individual, i.e., the knowledge of
a subset of her mobility data, the adversary tries to re-identify all the records
in the dataset regarding the individual under attack. In this paper we use the
definition of privacy risk (or re-identification risk) introduced in (13).



A background knowledge represents both the kind and quantity of informa-
tion known by an adversary. Two examples of kinds of background knowledge
are a subset of the locations visited by an individual (spatial dimension) and the
specific times an individual visited those locations (spatial and temporal dimen-
sions). We denote with k the number of the elements known by the adversary. So
for example a specific background knowledge is the knowledge of three specific
locations visited by the individual under attack. We denote a set of background
knowledge of size k with Bk and a specific background knowledge with b.

Let D be a database, D a mobility dataset extracted from D as an aggregation
of the data on specific dimensions (e.g., an aggregated data structure and/or a
filtering on time and/or space), and Du the set of records representing individual
u in D, we define the probability of re-identification as follows:

Definition 3 (Probability of re-identification). Given an attack, a func-
tion matching(d, b) indicating whether or not a record d ∈ D matches the back-
ground knowledge b, and a function M(D, b) = {d∈D|matching(d, b) = True},
we define the probability of re-identification of an individual u in dataset D as:
PRD(d = u|b) = 1

|M(D,b)| that is the probability to associate record d ∈ D to

individual u, given background knowledge b.

Note that PRD(d=u|b) = 0 if the individual u is not represented in D. Since
each background knowledge b has its own probability of re-identification, we
define the risk of re-identification of an individual as the maximum probability
of re-identification over the set of possible background knowledge:

Definition 4 (Risk of re-identification or Privacy risk). The risk of re-
identification (or privacy risk) of an individual u given a set of background
knowledge Bk is her maximum probability of re-identification Risk(u,D) =
maxPRD(d = u|b) for b ∈ Bk. The risk of re-identification has the lower bound
|Du|
|D| (a random choice in D), and Risk(u,D) = 0 if u /∈ D.

An individual is hence associated to several privacy risks, each for every
background knowledge of an attack. Every privacy risk of an individual can be
computed using the following procedure: (i) define an attack based on a specific
background knowledge, (ii) given an individual and fixing k, compute all the
possible b ∈ Bk and the corresponding probability of re-identification, and (iii)
select the privacy risk of the individual for a set Bk as the maximum probability
of re-identification across all b ∈ Bk.

3.1 Computational Complexity of Privacy Risk Computation

The procedure of privacy risk computation has a high computational complexity.
We assume that the adversary uses all the information available to her when
conducting a re-identification attack on an individual. The maximum possible
value of k is len, the length of the data structure of an individual. Since it
is unlikely that an adversary knows the complete movement of an individual
(i.e., all the points), we have to reason about different and reasonable values



of k. To compute all b ∈ Bk we have to compute a k-combination of elements
from the original data structure. We need all b to correctly compute the risk
of re-identification, since we have to know all the possible probabilities of re-
identification. This leads to a high overall computational complexity O(

(
len
k

)
×

N), since the framework generates
(
len
k

)
background knowledge b and, for each

b, it executes N matching operations by applying function matching. While
some optimizations can be made depending on the kind of attack simulated, the
overall complexity of the procedure is dominated by the

(
len
k

)
term.

4 Fast Privacy Risk Assessment with Data Mining

Given its computational complexity, the privacy risk computation becomes un-
feasible as the size of the dataset increases. This drawback is even more serious
if we consider that the privacy risks must be necessarily re-computed every time
the mobility dataset is updated and for every selection of individuals, geographic
areas and periods of time. In order to overcome these problems, we propose a
fast and flexible data mining approach. The idea is to train a regression model
to predict the privacy risk of an individual based solely on her individual mo-
bility patterns. The training of the predictive model is made by using a dataset
where every record refers to an individual and consists of (i) a vector of the in-
dividual’s mobility features and (ii) the privacy risk value of the individual. We
make our approach parametric with respect to the predictive algorithm: in our
experiments we use a Random Forest regressor, but every algorithm available in
literature can be used for the predictive tasks. Note that our approach is con-
strained to the fixed well-defined set of attacks introduced in Section 4.2, which
is a representative set of nine sufficiently diverse attacks tailored for the data
structures required to compute standard individual human mobility measures.
Our approach can be easily extended to any type of attack defined on human
mobility data by using the privacy framework proposed by (11).

4.1 Individual Mobility Features

The mobility dynamics of an individual can be described by a set of measures
widely used in literature. The number of visits V of an individual is the length
of her trajectory, i.e., the sum of all the visits she did in any location during
the period of observation (8). By dividing this quantity by the number of days
in the period of observation we obtain the average number of daily visits V ,
which is a measure of the erratic behavior of an individual during the day (9).
The length Locs of the frequency vector indicates the number of distinct places
visited by an individual during the period of observation (14). Dividing Locs by
the number of available locations on the considered territory we obtain Locsratio,
which indicates the fraction of territory exploited by an individual in her mobility
behavior. The maximum distance Dmax traveled is defined as the length of the
longest trip of an individual (19), while Dtrip

max is defined as the ratio between
Dmax and the maximum possible distance between the locations in the area. The



sum of all the trip lengths is defined as Dsum (19). It can be also averaged over
the days in the period of observation obtaining Dsum. The radius of gyration
rg is the characteristic distance traveled by an individual during the period of
observation (8). The mobility entropy E is a measure of the predictability of
an individual’s trajectory (6). Also, for each individual we keep track of the
characteristics of three different locations: the most, the second most and the
least visited location. The frequency wi of a location i is the number of times an
individual visited i during the period of observation, while the average frequency
wi is the daily average frequency of i. We also define wpop

i as the frequency of
location i divided by the popularity of i in the whole dataset. The quantity
Uratio
i is the number of distinct individuals that visited location i divided by

the total number |Uset| of individuals in the dataset, while Ui is the number
of distinct individuals that visited i during the period of observation. Finally,
the location entropy Ei is the predictability of i, defined as a variation of the
Shannon entropy.

Every individual u in the dataset is described by a mobility vector mu of the
16 mobility features described above. It is worth noting that all the measures
can be computed in linear time on the size of the corresponding data structure.

4.2 Privacy attacks on mobility data

In this section we describe the attacks we use in this paper:

Location Attack. In a Location attack the adversary knows a certain number
of locations visited by the individual but she does not know the temporal order
of the visits. Since an individual might visit the same location multiple times in
a trajectory, the adversary’s knowledge is a multiset.

Location Sequence Attack. Here, the adversary knows a subset of the loca-
tions visited by the individual and the temporal ordering of the visits.

Visit Attack. In a Visit attack the adversary knows a subset of the locations
visited by the individual and the time the individual visited these locations.

Frequent Location and Sequence Attack. We introduce two attacks based
on location knowledge applied to frequency vectors. In the Frequent Location
attack the adversary knows a number of frequent locations visited by an indi-
vidual, while in the Frequent Location Sequence attack the adversary knows a
subset of the locations visited by an individual and the relative ordering with
respect to the frequencies (from most frequent to least frequent). The Frequent
Location attack is similar to the Location attack but in frequency vectors a loca-
tion can appear only once. The Frequent Location Sequence attack is similar to
the Location Sequence attack, but a location can appear only once in the vector
and locations are ordered by descending frequency and not by time.



Frequency Attack. We introduce an attack where the adversary knows the
locations visited by the individual, their reciprocal ordering of frequency, and the
minimum number of visits of the individual. This means that, when searching for
specific subsequences, the adversary must consider also subsequences containing
the known locations with a greater frequency.

Home And Work Attack. In the Home and Work attack the adversary knows
the two most frequent locations of an individual and their frequencies. It assumes
the same background knowledge of Frequency attack but related only to two
locations. This is the only attack where the set of background knowledge is fixed
and composed of just a single 2-combination for each individual.

4.3 Construction of training dataset

Given an attack i based on a specific set of background knowledge Bi
j , the

regression training dataset TRi
j can be constructed by the following procedure:

first, given a mobility dataset D, for every individual u we compute the set of
features described in Section 4.1 based on her mobility data. Every individual u
is hence described by a mobility feature vector mu. All the individuals’ feature
vectors compose mobility matrix F=(m1, . . . ,mn), where n is the number of
individuals in D. Second, for every individual we simulate the attack with Bi

j

on D, in order to compute a privacy risk value for every individual. We obtain
a privacy risk vector Ri

j = (r1, . . . , rn). The regression training set is hence

TRi
j = (F,Ri

j);

Every regression dataset TRi
j is used to train a predictive model M i

j . If
0 ≤ i ≤ I where I is the number of different kinds of attack and 0 ≤ j ≤ J
where J is the number of different sets of possible background knowledge, we
have a total of J × I models. For example, if we consider sets of background
knowledge ranging in size from j = 1 to j = 5 for 7 different attacks, we would
have I = 7 and J = 5. The predictive model will be used by the Data Provider
to immediately estimate the privacy risk value of previously unseen individuals,
whose data were not used in the learning process, with respect to attack i, set
of background knowledge Bi

j and dataset D.

Example 1 (Construction of regression training set). Let us consider a mobility
dataset of trajectories D={Tu1 , Tu2 , Tu3 , Tu4 , Tu5} corresponding to five individ-
uals u1, u2, u3, u4 and u5. Given an attack i, a set of background knowledge
Bi

j and dataset D, we construct the regression training set TCi
j as follows:

first, for every individual ui we compute the 21 individual mobility measures
based on her trajectory Tui

. Every individual ui is hence described by a mobil-

ity feature vector of length 21 mui = (m
(ui)
1 , . . . ,m

(ui)
21 ). All the mobility feature

vectors compose mobility matrix F=(mu1 ,mu2 ,mu3 ,mu4 ,mu5); second, we sim-
ulate the attack with Bi

j on dataset D and obtain a vector of five privacy risk

values Ri
j = (ru1

, ru2
, ru3

, ru4
, ru5

), each for every individual.



4.4 Usage of the regression approach

The Data Provider can use a regression model M i
j to determine the value of

privacy risk with respect to an attack i and a set of background knowledge Bi
j

for: (i) previously unseen individuals, whose data were not used in the learn-
ing process; (ii) a selection of individuals in the database already used in the
learning process. It is worth noting that with existing methods the privacy risk
of individuals in scenario (ii) must be recomputed by simulating attack i from
scratch. In contrast, the usage of regression model M i

j allows for obtaining the
privacy risk of the selected individuals immediately. The computation of the
mobility measures and the regression of privacy risk can be done in polynomial
time as a one-off procedure. To clarify this point, let us consider the following
scenario. A Data Analyst requests the Data Provider for updated mobility data
about a new set of individuals with the purpose of studying their characteristic
traveled distance (radius of gyration rg) and the predictability of their move-
ments (mobility entropy E). Since both measures can be computed by using a
frequency vector, the Data Provider can release just the frequency vectors of the
individuals requested. Before that, however, the Data Provider wants to deter-
mine the level of privacy risk of the individuals with respect to the Frequency
attack (F ) and several sets of background knowledge BF

j . The Data Provider

uses the regression model MF
j previously trained to obtain the privacy risk of the

individuals. So the Data Provider computes the mobility features for the individ-
uals in the dataset and gives them in input to the regression model, obtaining an
estimation of privacy risk. On the basis of privacy risks obtained from MF

j , the
Data Provider can identify risky individuals, i.e., individuals with a high privacy
risk. She then can decide to either filter out the risky individuals or to select
suitable privacy-preserving techniques (e.g., k-anonymity or differential privacy)
and transform their mobility data in such a way that their privacy is preserved.

5 Experiments

For all the attacks defined except the Home and Work attack we consider four
sets of background knowledge Bk with k = 2, 3, 4, 5, where each Bk corresponds
to an attack where the adversary knows k locations visited by the individual.
For the Home and Work attack we have just one possible set of background
knowledge, where the adversary knows the two most frequent locations of an
individual. We use a dataset provided by Octo Telematics 3 storing the GPS
tracks of 9,715 private vehicles traveling in Florence, a very populous area of
central Italy, from 1st May to 31st May 2011, corresponding to 179,318 trajecto-
ries. We assign each origin and destination point of the original raw trajectories
to the corresponding census cell according to the information provided by the
Italian National Statistics Bureau (8). We first performed a simulation of the
attacks computing the privacy risk values for all individuals in the dataset and

3https://www.octotelematics.com/

https://www.octotelematics.com/


for all Bk.4 We then performed regression experiments using a Random Forest
regressor.5 Table 1 shows the average Mean Squared Error (mse) and the av-
erage coefficient of determination R2 resulting from the regression experiments
for all the attacks. The results are averaged over k = 2, 3, 4, 5, since the empir-
ical distributions of privacy risk are fairly similar across different values of k.
Also, mse and R2 are almost identical for each kind of attack. The best results
are obtained for the Frequent Location Sequence attack, with values of mse =
0.01 and R2 = 0.92, while the weakest results are obtained for the Home and
Work attack, with values of mse = 0.07 and R2 = 0.50. Overall, the results show
good predictive performance across all attacks, suggesting that regression could
indeed be an accurate alternative to the direct computation of privacy risk.

Table 1. Results of regression experiments.

predicted variable mse r2

Frequent Location Sequence 0.01 0.92

Visit 0.01 0.89

Frequency 0.02 0.88

Location 0.02 0.90

Location Sequence 0.02 0.84

Frequent Location 0.03 0.73

Home and Work 0.07 0.50

Execution Times. We show the computational improvement of our approach
in terms of execution time by comparing in Table 2 the execution times of
the attack simulations and the execution times of the regression tasks.6 The
execution time of a single regression task is the sum of three subtasks: (i) the
execution time of training the regressor on the training set; (ii) the execution
time of using the trained regressor to predict the risk on the test set; (iii) the
execution time of evaluating the performance of regression. Table 2 shows that
the execution time of attack simulations is low for most of the attacks except
for Location Sequence and Location, for which execution times are huge: more
than 1 week each. In contrast the regression tasks have constant execution times
of around 22s. In summary, our approach can compute the risk levels for all the
33 attacks in 179 seconds (less than 3 minutes), while the attack simulations
require more than two weeks of computation.

4The Python code for attacks simulation is available here: https://github.com/
pellungrobe/privacy-mobility-lib

5We use the Python package scikit-learn to perform the regression experiments.
6For a given type of attack we report the sum of the execution times of the attacks

for configurations k = 2, 3, 4, 5. We perform the experiments on Ubuntu 16.04.1 LTS
64 bit, 32 GB RAM, 3.30GHz Intel Core i7.

https://github.com/pellungrobe/privacy-mobility-lib
https://github.com/pellungrobe/privacy-mobility-lib


Table 2. Execution times of attack simulations and regression tasks.

variable (
∑5

2 k) simulation regression

Home and Work 149s (2.5m) 7s

Frequency 645s (10m) 22s

Frequent Location Sequence 846s (14m) 22s

Frequent Location 997s (10m) 22s

Visit 2,274s (38m) 16s

LocationSequence > 168h (1week) 22s

Location > 168h (1week) 22s

total > 2weeks 172s

Discussion. The preliminary work presented above shows some promising re-
sults. The coefficient of determination and the execution times suggest that
the regression can be a valid and fast alternative to existing privacy risk assess-
ment tools. Instead of re-computing privacy risks when new data records become
available, which would result in high computational costs, a Data Provider can
effectively use the regressors to obtain immediate and reliable estimates for every
individual. The mobility measures can be computed in linear time of the size of
the dataset. Every time new mobility data of an individual become available,
the Data Provider can recompute her mobility features. To take into account
long-term changes in mobility patterns the recomputation of mobility measures
can be done at regular time intervals (e.g., every month) by considering a time
window with the most recent data (e.g., the last six months of data).

6 Related Works

Human mobility data contains personal sensitive information and can reveal
many facets of the private life of individuals, leading to potential privacy viola-
tion. To overcome the possibility of privacy leaks, many techniques have been
proposed in literature. A widely used privacy-preserving model is k-anonymity
(13), which requires that an individual should not be identifiable from a group
of size smaller than k based on their quasi-identifiers (QIDs), i.e., a set of at-
tributes that can be used to uniquely identify individuals. Assuming that adver-
saries own disjoint parts of a trajectory, (17) reduces privacy risk by relying on
the suppression of the dangerous observations from each individual’s trajectory.
In (20), authors propose the attack-graphs method to defend against attacks,
based on k-anonymity. Other works are based on the differential privacy model
(5). (7) considers a privacy-preserving distributed aggregation framework for
movement data. (3) proposes to publish a contingency table of trajectory data,
where each cell contains the number of individuals commuting from a source
to a destination. (24) defines several similarity metrics which can be combined
in a unified framework to provide de-anonymization of mobility data and social
network data. One of the most important work about privacy risk assessment is
the Linddun methodology (4), a privacy-aware framework, useful for modeling



privacy threats in software-based systems. In the last years, different techniques
for risk management have been proposed, such as NIST’s Special Publication
800-30 (16). Unfortunately, many of these works do not consider privacy risk
assessment and simply include privacy considerations when assessing the impact
of threats. In (18), authors elaborate an entropy-based method to evaluate the
disclosure risk of personal data, trying to manage quantitatively privacy risks.
The unicity measure proposed in (15) evaluates the privacy risk as the number
of records/trajectories which are uniquely identified. (2) proposes a risk-aware
framework for information disclosure which supports runtime risk assessment,
using adaptive anonymization as risk-mitigation method. Unfortunately, this
framework only works on relational datasets since it needs to discriminate be-
tween quasi-identifiers and sensitive attributes. In this paper we use the privacy
risk assessment framework introduced by (11) to calculate the privacy risks of
each individual in a mobility dataset.

7 Conclusion

Human mobility data are a precious proxy to improve our understanding of hu-
man dynamics, as well as to improve urban planning, transportation engineering
and epidemic modeling. Nevertheless human mobility data contain sensitive in-
formation which can lead to a serious violation of the privacy of the individuals
involved. In this paper we explored a fast and flexible solution for estimating
the privacy risk in human mobility data, which overcomes the computational
issues of existing privacy risk assessment frameworks. We showed through ex-
perimentations that our approach can achieve good estimations of privacy risks.
As future work, it would be necessary to test our approach more extensively on
different datasets and to evaluate the importance of mobility features with re-
spect to the prediction of risk. Another possible extension of our method would
be to apply more refined data mining techniques to assess the privacy risk of in-
dividuals. Moreover, our approach provides a fast tool to immediately obtain the
privacy risks of individuals, leaving to the Data Provider the choice of the most
suitable privacy preserving techniques to manage and mitigate the privacy risks
of individuals. It would be interesting to perform an extensive experimentation
to select the best techniques to reduce the privacy risk of individuals in mobility
datasets and at same time ensuring high data quality for analytical services.
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